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 2

Abstract  24 

 We produce fine-resolution, three-dimensional fields of meteorological and other 25 

variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement 26 

(ARM) Southern Great Plains (SGP) site. The Community Gridpoint Statistical 27 

Interpolation (GSI) System is implemented in a multi-scale data assimilation (MS-DA) 28 

framework that is used within the Weather Research and Forecasting (WRF) model at a 29 

cloud resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis 30 

products and constrains fine-scale atmospheric properties by assimilating high-resolution 31 

observations. A set of experiments show that the data assimilation analysis realistically 32 

reproduces the intensity, structure and time evolution of clouds and precipitation 33 

associated with a mesoscale convective system. Evaluations also show that the large-34 

scale forcing derived from the fine-resolution analysis has an overall accuracy 35 

comparable to the existing ARM operational product.  For enhanced applications, the 36 

fine-resolution fields are used to characterize the contribution of subgrid variability to the 37 

large-scale forcing and to derive hydrometeor forcing, which are presented in companion 38 

papers. 39 

 40 
  41 
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1. Introduction  42 

The Earth’s climate system involves a variety of physical processes that span a 43 

wide range of spatial and temporal scales. These processes fundamentally influence 44 

climate and climate change, but often occur on scales that are too small for typical global 45 

climate models (GCMs) to resolve; so, these unresolved physical processes must be 46 

parameterized in such models. Aerosol, cloud and precipitation processes and their 47 

interactions that are known as “fast physics” are among these processes, and their 48 

parameterizations have remained one of the greatest sources of uncertainty in climate 49 

models, as explained in the well-known “Charney Report” [Charney et al., 1979] to the 50 

IPCC report [IPCC, 2013].  51 

Improving parameterizations of these fast-physics processes is thus essential to 52 

reducing uncertainty in climate simulations and to increasing the ability in the projections 53 

of future climate. For this purpose, the U.S. Department of Energy’s Atmospheric 54 

Radiation Measurement (ARM) Program established observational sites over an area of a 55 

typical GCM grid-cell. High-resolution, surface-based measurements are gathered for 56 

characterizing a variety of important atmospheric processes [Stokes and Schwartz, 1994; 57 

Ackerman and Stokes, 2003]. Along with high-resolution measurements, a hierarchy of 58 

models is commonly used, including single-column models (SCMs), cloud-resolving 59 

models (CRMs), and large eddy simulations (LES). [e.g., Zhang and Lin, 1997; Randall 60 

and Cripe, 1999; Song et al., 2013].  The observing and modeling efforts collectively aim 61 

to understand fast processes on a variety of physical scales within a GCM grid-cell, 62 

evaluate and improve associated parameterizations.  At its outset, the ARM program 63 

identified a specific strategy “to develop methods that will allow the output of individual 64 
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instruments, which measure different parameters, to be combined to infer the time-65 

dependent three-dimensional field of meteorological variables” [Stokes and Schwartz, 66 

1994]. The fields that are inferred can then be used to test GCMs on a variety of scales 67 

and, toward this end, data assimilation was explicitly suggested by Stokes and Schwartz 68 

[1994].  69 

Data assimilation is a methodology based on optimal estimation theory [Ménard 70 

and Daley, 1996; Cohn, 1997; Li and Navon, 2001], which attempts to integrate all 71 

available observations into a model to produce analysis fields that can be used to provide 72 

model initial conditions to improve forecasts, perform diagnostic analyses, as well as 73 

other applications. The meteorological community has employed data assimilation for 74 

more than three decades to provide initial conditions for numerical weather prediction 75 

models and to develop reanalysis products for a wide spectrum of applications [Kalnay, 76 

2003].   77 

In this study, we aim to produce fine-resolution, three-dimensional analysis fields 78 

for the ARM Southern Great Plains (SGP) site using the Community Gridpoint Statistical 79 

Interpolation (GSI) data assimilation system (http://www.dtcenter.org).  The GSI system 80 

is based on a three-dimensional variational data assimilation (3DVAR) algorithm. This 81 

system was evolved from its predecessor that is known as the Spectral Statistical 82 

Interpolation (SSI) and was developed in the late 1980’s at the National Centers for 83 

Environmental Prediction (NCEP) [Parrish and Derber, 1992]. The GSI system has been 84 

used operationally at NCEP for about two decades, and it continues to be improved in its 85 

performance and capability of assimilating new measurements [Wu et al., 2002; Kleist et 86 

al., 2009].  87 
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In this application, we implement GSI in a multi-scale data assimilation (MS-DA) 88 

framework [Li et al., 2012]. The MS-DA algorithm is formulated for fine-resolution 89 

models at a resolution down to an order of 1 km [Li, 2012; Toth et al., 2013].  Such fine-90 

resolution models encompass a wide range of temporal and spatial scales.  In general, 91 

data assimilation algorithms attempt to minimize a cost function to obtain a minimum 92 

variance, or maximum likelihood estimation, known as the optimal estimation [e.g., 93 

Cohn, 1997]. When data assimilation is applied to a fine-resolution model, small-scale 94 

structures are subjected to strong filtering effects [Daley, 1991].  A few studies have 95 

demonstrated that a set of data assimilation should be applied for a sequence of reduced 96 

decorrelation length scales [e.g., Xie et al., 2011; Zhang et al., 2011]. In the MS-DA 97 

algorithm, the cost function is decomposed for distinct spatial scales. Here, the cost 98 

function is decomposed into a large-scale and small-scale component. One advantage of 99 

MS-DA is that it solves the data assimilation problem sequentially from large to small 100 

scales to reduce the filtering on small scales, thus enabling enhanced constraints on small 101 

scales through the assimilation of high-resolution observations.  102 

Another advantage of using the MS-DA algorithm is to exploit existing reanalysis 103 

products developed at meteorological centers in addition to assimilating high-resolution 104 

measurements. We implement the MS-DA algorithm in the Weather Research and 105 

Forecasting (WRF) model at a cloud resolving resolution of 2 km, which is a much finer 106 

resolution than used in reanalysis products. In the present work, we use the North 107 

American Regional Reanalysis (NARR) [Mesinger et al., 2006], which has a horizontal 108 

resolution of 32 km. In the MS-DA algorithm, we use the NARR reanalysis as the large-109 

scale component, and the MS-DA focuses on the small-scale component.  110 
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        This paper describes the implementation of the MS-DA algorithm and presents 111 

evaluations of the generated analysis using a variety of cloud and precipitation 112 

observations. Section 2 presents the MS-DA algorithm, its implementation, and model 113 

configuration.  In Section 3, we assess the quality of the generated MS-DA analysis using 114 

independent observations. Noting that large-scale forcing is needed to drive SCMs, 115 

CRMs, and LES, in section 4 we derive large-scale forcing from the generated MS-DA 116 

analysis. An operational product of large-scale forcing has been developed and 117 

extensively used in the ARM program [Zhang and Lin, 1997; Randall and Cripe, 1999; 118 

Ghan et al., 2000; Xie et al., 2004; Fridlind et al., 2012] and, the derived large-scale 119 

forcing is further evaluated against the operational product [Xie et al., 2010].  Summary 120 

and discussion are given in section 5.   121 

          Two companion papers [S. Feng, Z. Li, Y. Liu, W. Lin, M. Zhang, T. Toto, A. M. 122 

Vogelmann, and S. Endo, Development of fine-resolution analyses and expanded large-123 

scale forcing properties. Part II: Scale-awareness and application to single-column model 124 

experiments, submitted to J. Geophys. Res., 2014; S. Feng, Z. Li, W. Lin, Y. Liu, M. 125 

Zhang, T. Toto, A. M. Vogelmann, and S. Endo, Development of fine-resolution analyses 126 

and expanded properties of large-scale forcing. Part III: Hydrometeor forcing and 127 

application to single-column model experiments, submitted to J. Geophys. Res., 2014] 128 

extend this work by using the generated fine-resolution, three-dimensional fields to 129 

explore the contributions of subgrid variability and hydrometeor forcing to the large-scale 130 

forcing.  131 

 132 

2. Multi-scale data assimilation (MS-DA) 133 



 7

         For completeness, we present the basic formulation of MS-DA, and then describe 134 

its implementation in this application. 135 

 136 

2.1. The MS-DA algorithm 137 

The MS-DA framework is formulated based on the 3DVAR algorithm, which 138 

seeks an analysis that minimizes the cost function with respect to the state variable   139 

                         (1) 140 

 141 

In this cost function,  is the N-vector, and is the M-vector consisting of 142 

observations. is known as the background, and  is the N N background error 143 

covariance given by  144 

  145 

where denotes an ensemble mean over many realizations, and the superscript 146 

stands for transpose. Here  is the background error vector, where the 147 

superscript  indicates the true state. The M-vector  consists of observations, and the M 148 

 M matrix R is the observation error covariance associated with the observation vector 149 

y. The M  N matrix  is an observational operator that maps the model state variable 150 

to the observation and is assumed to be linear to simplify the discussion here. This 151 

analysis is statistically optimal as a minimum error variance estimate [Jazwinski, 1970; 152 

Cohn, 1997], or is a maximum likelihood (Bayesian) estimate if both the forecast and 153 

observation errors have Gaussian distributions. 154 
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Following the notation suggested by Ide et al. [1997], Eq. (1) can be written in the 155 

incremental form 156 

  (2) 157 

where denotes the increment of the state variable, and is the 158 

innovation. 159 

To represent the multi-scale nature, is further partitioned into two components 160 

of spatially distinct scales that yields, 161 

  (3) 162 

where  and  denote the large- and small-scale components of , respectively;163 

and  are the corresponding linear operators and can be spatial filters or orthogonal 164 

decompositions. 165 

Corresponding to Eq. (3), the background error can be decomposed as  166 

  (4) 167 

where  and  are the large- and small-scale components of the background error. 168 

Following Eq. (4), we obtain 169 

  (5) 170 

where  and  are the error covariances associated with  and .  Background 171 

error covariances of the additive form as in Eq. (5) have been used to improve the 172 

effectiveness of 3DVAR in assimilating high-resolution observations [Wu et al., 2002]. 173 

To obtain Eq. (5), we have assumed that the large and small-scale background errors are 174 

uncorrelated; that is, . 175 
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2
δ xT B−1δ x + 1

2
Hδ x − d( )T

R−1 Hδ x − d( )

δ x = x − xb d = y − Hxb

δ x

δ x = PLδ x + PSδ x = δ xL + δ xS ,

δxL
δxS δ x

PL PS

eb = PLeb + PSe
b = eL

b + eS
b ,

eL
eS

B = eL
b eL

b( )T
+ eS

b eS
b( )T

= BL + BS ,

BL BS xL
b xS

b

eL eS( )T = 0



 9

With the decomposition given in Eq. (3) and Eq. (5), we follow Li et al. [A multi-176 

scale data assimilation scheme: Formulation and illustration, Submitted to Mon. Wea. 177 

Rev., 2014] to decompose Eq. (2) into two cost functions 178 

  (6) 179 

 180 

  (7) 181 

 182 

We refer to the 3DVAR that uses the partitioned cost functions Eqs. (6) and (7) as MS-183 

3DVAR, in short “MS-DA”.  184 

The background error covariance is characterized by the decorrelation length 185 

scale, and this length scale dictates the scales beyond which processes are filtered out 186 

[Daley, 1991]. The smaller the decorrelation length scale is, the more effectively high-187 

resolution observations are assimilated and, thus, a small decorrelation length scale in Bୱ 188 

enhances the effectiveness of the assimilation of high-resolution observations. 189 

 190 

2.2. MS-DA implementation  191 

As discussed in the introduction, one advantage of using the MS-DA algorithm is 192 

that it can make use of existing reanalysis products. Current regional reanalysis generally 193 

has a resolution on the order of 10 km, which are much coarser than the cloud-resolving 194 

resolution that we seek. To proceed, we assume that the regional reanalysis is the large-195 

scale component associated with the cost function Eq. (6), and the small-scale component 196 

analysis is obtained by minimizing the cost function Eq. (7).  197 

The cost function given in Eq. (7) has the same form as that given in Eq. (2) for 198 

3DVAR, but the error covariances are different. In the observational error covariance, an 199 

JL δ xL( ) = 1

2
δ xL

T BL
−1δ xL + 1

2
Hδ xL − d( )T

R + HBSH T( )−1
Hδ xL − d( ),

JS δ xS( ) = 1

2
δ xS

T BS
−1δ xS + 1

2
Hδ xS − d( )T

R + HBLH T( )−1
Hδ xS − d( ),
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additional term  appears, and this term is known as representativeness error 200 

covariance. This correspondence in the form of the cost function allows us to using an 201 

existing 3DVAR system for the small-scale data assimilation. We chose here the GSI 202 

system, with a modified error covariance.  203 

The GSI system is relatively straightforward to implement in the MS-DA 204 

algorithm because of its unique scheme of constructing the background error covariance. 205 

It uses a recursive filtering method to construct the background error correlations 206 

whereby a decorrelation length scale can be explicitly specified [Wu et al., 2002]. This is 207 

necessary for small-scale data assimilation to be performed using Eq. (7).  208 

The primary motivation for us to use the GSI system is that it is an operational 209 

system that has been extensively evaluated on the daily basis. More importantly, it has 210 

been developed with an unprecedented capability of assimilating a wide range of 211 

observations during the past two decades [Derber and Wu, 1998; Kleist et al., 2009].  It 212 

can assimilate basically all types of the conventional observations and a variety of 213 

satellite radiances. The assimilation of satellite radiances is particularly desirable for the 214 

present work, since it helps constrain radiation balances in the analysis.  215 

Note that there are data assimilation schemes more advanced than 3DVAR, such 216 

as four-dimensional variational data assimilation (4DVAR) and 3/4DVAR-based 217 

ensemble–variational hybrid data assimilation [Lorenc, 2003; Clayton et al., 2013]. 218 

Although 3DVAR is still the dominant scheme for regional models, a GSI-based 219 

ensemble–variational hybrid data assimilation has also been developed [Wang et al., 220 

2013]. Once the GSI-based hybrid scheme becomes available, it is straightforward to 221 

update the MS-DA methodology presented here to use it. 222 

HBL H T
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 223 

2.3. Model configuration 224 

Version 3.4 of the WRF model is employed in this study. The model is configured 225 

with triple-nested domains that are roughly centered on the ARM SGP central facility 226 

(36.6°N, 97.5°W) (Figure 1a).  The grid spacing of the nested domains, from the largest 227 

area to the smallest, is 18-, 6-, and 2-km. The three domains all have 45 vertical layers 228 

with the top at 100 hPa. The Morrison double-moment microphysics [Morrison and 229 

Gettelman, 2008], Yonsei State University (YSU) planetary boundary layer physics [Noh 230 

et al., 2003], and the Noah land surface model are used.  The Kain-Fritsch cumulus 231 

scheme [Kain, 2004] is applied to the outer and middle domains, but no cumulus scheme 232 

is applied to the inner domain due to its cloud resolving resolution (2 km). In the 233 

discussion that follows, we focus on the innermost domain.  234 

As mentioned previously, NARR [Mesinger et al., 2006] is used as the large-scale 235 

data assimilation reanalysis. NARR has a spatial resolution of 32 km and contains 236 

temperature, wind, moisture, soil data, and dozens of other parameters, which result from 237 

assimilating a large amount of observational data to produce a long-term three-238 

dimensional dataset over North America. The observations that are assimilated into 239 

NARR include temperatures, winds, and moisture from radiosondes as well as pressure 240 

data from surface observations. Also included in the dataset are dropsondes, aircraft 241 

temperatures and winds, satellite radiances (a measure of heat) from polar orbiting 242 

satellites, and cloud drift winds from geostationary satellites.  243 

Since the innermost domain in the WRF configuration has a spatial resolution of 2 244 

km, it is one order of magnitude finer than that of NARR. Thus, the small-scale 245 
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background , at least for spatial scales smaller than 32 km in the NARR reanalysis.  246 

The small-scale component is estimated from the innovation ; however, the available 247 

observations are often inadequate to fully constrain the small-scale component, because 248 

the dimension of ݔ௦ is generally much larger than the dimension of ݀.  To mitigate this 249 

inadequacy, we combine the small-scale data assimilation with downscaling. 250 

Small-scale components can often be reproduced from a prescribed large-scale 251 

component through non-linear dynamical interactions in the model, as demonstrated in 252 

downscaling simulations [Castro et al., 2005; Shapiro et al., 2010]. Here, the 253 

downscaling simulation is achieved by initializing WRF with the NARR data and 254 

integrating the WRF model for a12-h period. After the downscaling integration, the 255 

small–scale data assimilation is applied at 6-h intervals during the subsequent 24-h model 256 

integration. The four data assimilation analyses generated during the subsequent 24-h are 257 

the MS-DA analyses that we aim to produce. For example, the NARR data is used to 258 

initialize the WRF model at 12 UTC 12 June 2007, and the model is integrated for 12 h. 259 

Small-scale data assimilation is applied at 00 UTC, 06 UTC, 12 UTC, and 18 UTC 13 260 

June 2007. The data assimilation analyses at these four times are the MS-DA analyses. In 261 

the following sections, we also use hourly fields. The hourly fields are the model 262 

forecasts, filling the gaps between the 6-hourly analyses. 263 

In the experiments presented, the ARM observations assimilated include those 264 

from Surface Meteorological Observational Stations (SMOS) and vertical profiles from 265 

balloon-borne sounding system (SONDE). The locations of the observation sites are 266 

shown in Figure 1b.  Along with these ARM observations, measurements operationally 267 

xS
b = 0

d
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assimilated by NCEP are also used, such as conventional observations from radiosondes 268 

and radiances from an array of satellites [Kleist et al., 2009].  269 

Given the density of observations, a model resolution of 2 km, and a NARR 270 

resolution of 32 km, we specify the decorrelation length scale as 30 km. This scale is 271 

given close to the NARR resolution along with an empirical adjustment.  Using this small 272 

decorrelation length scale, we attempt to limit the filtering on the scales larger than 60 km 273 

(twice the decorrelation length scale) and thus assimilate the high-resolution observations 274 

as effectively as possible. 275 

 276 

3. Evaluation of the MS-DA analysis 277 

We present results associated with a convective cloud and precipitation event, 278 

which occurred from 13 to 15 June 2007 during the Cloud and Land Surface Interaction 279 

Campaign at SGP.  During this time, a typical mesoscale convective system (MCS) 280 

[Houze, 2004] formed, intensified, and decayed. The event thus offers an ideal case for 281 

evaluating the representations of convective cloud and precipitation by the MS-DA 282 

analysis.  The evaluation is conducted primarily by comparing modeled clouds and 283 

precipitation against observations. Further, to demonstrate the effectiveness of the MS-284 

DA in reproducing the MCS, we also run control WRF simulations without the MS-DA. 285 

The difference between the runs with and without the MS-DA represents the 286 

improvement due to MS-DA.  287 

 288 

3.1. Reproduction of the mesoscale convective system 289 
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An MCS moved into the ARM SGP site from the northwest around 21 UTC, 13 290 

June 2007 and intensified. Figure 2 presents a GOES (Geostationary Operational 291 

Environmental Satellite) infrared image and a NEXRAD (Next-Generation Radar) 292 

reflectivity structure of the MCS around 03 UTC 14 June.  293 

The WRF model is initialized at 12 UTC 12 June 2007. Figure 3 displays the 294 

simulated maximum reflectivity with and without MS-DA 39 h later at 03 UTC 14 June. 295 

Without MS-DA (Figure 3b), the model reflectivity is significantly weaker than 296 

observed, and the MCS structure is loosely organized.  In contrast, with the MS-DA 297 

(Figure 3a), a strong convective echo is realistically reproduced in both its intensity and 298 

spatial structure. We conclude that the MS-DA significantly improves the representation 299 

of the MCS.  300 

 301 

3.2. Hydrometeor reflectivity  302 

The ARM SGP site is equipped with a set of active remote sensors, such as a 303 

millimeter wavelength cloud radar, micropulse lidar, and ceilometer. Combining the 304 

measurements from these instruments, the ARM Active Remote Sensing of Clouds 305 

(ARSCL) product provides estimates of vertical profiles of hydrometeor reflectivity over 306 

SGP [Clothiaux et al., 2000; Clothiaux et al., 2001]. We compare the profiles calculated 307 

from the WRF model with those derived from the radar measurements.  308 

In Figure 4a, we see two strong events in the ARSCL radar reflectivity profiles, 309 

one from 12 to 15 UTC 13 June and the other from 00 to 06 UTC 14 June. Figure 4b 310 

shows that the MS-DA analysis (averaged over 100 km) reproduces the two events fairly 311 

well. For the simulation without MS-DA, the reflectivity is significantly underestimated 312 
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(Figure 4c).  The contrast suggests that the MS-DA improves the representation of 313 

hydrometeor reflectivity. 314 

 315 

3.3. Precipitation 316 

We further evaluate the modeled precipitation using the data from the ABRFC 317 

(Arkansas-Red Basin River Forecast Center, available at 318 

http://www.arm.gov/data/vaps/abrfc). This data consists of 4-km hourly precipitation 319 

determined from a combination of WSR-88D NEXRAD radar precipitation estimates and 320 

rain gauge reports.  Figure 5 displays a time series of precipitation rate from the ABRFC 321 

data and from the WRF simulation with and without MS-DA.  The model precipitation 322 

rates are averages over the innermost domain shown in Figure 1b. Two precipitation 323 

events are observed during the period, centered at 15 UTC 13 June and 06 UTC 14.  For 324 

the precipitation simulation without MS-DA, the peaks during the major precipitation 325 

events are lower than observed and the maximum rate lags the observation by about 9 h.  326 

In contrast, the modeled precipitation with MS-DA occurs at nearly the same time as in 327 

the observations for both events. While slightly underestimating the peak during the first 328 

precipitation event (18 UTC 13 June), MS-DA reproduces the amplitude of the second 329 

event well (00-12 UTC 14 June).   330 

Figure 6 illustrates the spatial distribution of hourly precipitation at 08 UTC 13 331 

June and 06 UTC and 18 UTC 14 June.  These three snapshots are selected to depict 332 

precipitation during the development of the first precipitation event, at the peak of the 333 

second event, and after the second event, respectively. The results suggest that the MS-334 

DA significantly improves the model precipitation.  335 
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 336 

4. Comparison with large-scale forcing fields 337 

For the ARM SGP site, the large-scale forcing product has been produced using a 338 

constrained objective variational analysis [Zhang and Lin, 1997]. This forcing is a 339 

primary data product for the ARM program and has been carefully evaluated and 340 

extensively used [e.g., Ghan et al., 2000; Xie et al., 2003; Xie et al., 2005]. From the fine-341 

resolution MS-DA analysis, we can derive large-scale forcing fields.  We evaluate the 342 

MS-DA analysis by comparing the derived large-scale forcing fields to those in the ARM 343 

product.    344 

 345 

4.1. Formulation of large-scale forcing 346 

To derive large-scale forcing fields from the fine-resolution MS-DA analysis, we 347 

follow the formulation by Zhang and Lin [1997]. We write the governing equations of the 348 

large-scale atmospheric fields in the form 349 

∂V

∂t
+V ⋅ ∇V +ω ∂V

∂p
+ fk × ∇V + ∇Φ = −∇V 'V ' − ∂ω 'V '

∂p
            (8) 350 

            (9) 351 

 352 

            (10) 353 

  (11)   354 

where the overbar denotes the horizontal average over a specified domain that represents 355 

a GCM grid box, and the prime the deviation from the domain average. The variables are 356 

defined as follows: , horizontal wind; , air temperature; , mixing ratio of water 357 

∂T

∂t
+V ⋅∇T + ω ∂T

∂p
− α

cp







= Q

cp

− ∇ ⋅V 'T ' − ∂ω 'T '

∂ p
− ω 'α '

cp







,

∂q

∂t
+ V ⋅∇q + ω ∂q

∂ p
= S − ∇ ⋅V 'q ' − ∂ω 'q '

∂p
,

∇V + ∂ω
∂p

= 0,

V T q
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vapor; , vertical p-velocity; , pressure; , specific volume of the air; , the 358 

specific heat at constant volume; , geopotential; , Coriolis parameter; , the heating 359 

rate;  , the source of water vapor; k, the unit vector in the direction pointing upward.   360 

 is the horizontal del operator.  361 

Following Eqs. (8-11), the large-scale forcing fields are defined as  362 

  363 

   
364 

∂V

∂t











LS

= −V ⋅ ∇V −ω ∂V

∂p
− fk × ∇V − ∇Φ

 
365 

                             
(12)

 
366 

  (13) 367 

  (14) 368 

  (15) 369 

where is the pressure at the surface. 370 

Given the large-scale forcing fields, Eqs. (8-10) can be integrated in time within a 371 

single column in isolation from the model.  They thus consist of the basic equations of a 372 

SCM. We can also see that Eqs. (9) and (10) are independent of Eq. (8). This implies that 373 

an SCM lacks dynamical feedbacks that occur within complete three-dimensional 374 

atmospheric models. Practically speaking, Eqs. (9) and (10) can be integrated separately. 375 

In the following discussion, we are concerned only with Eqs. (9) and (10). 376 

We note that the terms associated with horizontal velocities, , arises from 377 

subgrid processes that are not resolved in GCMs. They are partially parameterized as 378 

hyper-diffusion in most GCMs [e.g., Palmer, 2001]. In large-scale forcing fields, they are 379 

ω p α cp

φ f Q

S

∇

∂T

∂t







LS

= −V ⋅∇T − ω ∂T

∂p
− α

cp







,

∂q

∂t







LS

= −V ⋅∇q −ω ∂q

∂p
,

ω = ∇ ⋅V dp,
P0

P


p0

V '
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generally included [Bechtold et al., 2000] or modeled using a nudging term [Randall and 380 

Cripe, 1999]. The contribution of this subgrid variability to large-scale forcing is not 381 

fully understood and will be addressed in the companion paper [S. Feng, Z. Li, Y. Liu, W. 382 

Lin, M. Zhang, T. Toto, A. M. Vogelmann, and S. Endo, Development of fine-resolution 383 

analyses and expanded large-scale forcing properties. Part II: Scale-awareness and 384 

application to single-column model experiments, submitted to J. Geophys. Res., 2014].  385 

In the following sections, we calculate the large-scale forcing fields for temperature, 386 

water vapor and vertical velocity following Eqs. (13)-(15).  387 

 388 

4.2. Derived large-scale forcing  389 

Figure 7 presents the derived large-scale forcing fields along with those from the 390 

ARM forcing product.  The observed precipitation rate is overlaid on the vertical velocity 391 

plots.  Overall, the time evolution of the derived large-scale forcing agrees well with that 392 

from the ARM forcing product. In Figure 7a and 7b, we see an intense upward motion 393 

event 00~12 UTC 14 June. It is associated with intense cooling in the middle and upper 394 

troposphere (Figure 7c and 7d) and with high moisture content in the lower troposphere 395 

(Figure 7e and 7f). Strong precipitation occurs during the strong upward motion event 396 

(Figure 7a and 7b), which indicates a large-scale balance between atmospheric motions 397 

and precipitation. 398 

 399 

4.3. Single-column model experiments 400 

To further evaluate the fine-resolution MS-DA analysis, we examine SCM 401 

simulations driven by the derived large-scale forcing. The SCM experiments are 402 
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conducted using the single-column version of the National Center for Atmospheric 403 

Research (NCAR) Community Atmospheric Model version 5 (CAM5), hereafter referred 404 

to as SCAM5.  The SCAM5 model contains the vertical advection scheme and all of the 405 

physics routines used in CAM5 [Neale et al., 2012], including the cloud microphysics 406 

and cloud macrophysics schemes. A detailed description of these schemes can be found 407 

in [Gettelman et al., 2008; Morrison and Gettelman, 2008; Gettelman et al., 2010]. Note 408 

that no relaxation/nudging is applied in the experiments presented here.  409 

Figure 8 presents the SCAM precipitation rates from simulations driven by the 410 

MS-DA-derived large-scale forcing and the ARM forcing product. Also shown are the 411 

observed and MS-DA simulated precipitation rates given in Figure 5. The simulations by 412 

the two forcings produce precipitation patterns that are very similar, confirming the 413 

consistency between the derived large-scale forcing and the ARM forcing product.   414 

Comparing the simulations to the observations, both simulations capture the 415 

major precipitation events and reproduce the overall time evolution, but there are two 416 

noticeable limitations. First, the simulated precipitation lags the observations for both 417 

forcings.  For the MS-DA-derived forcing, the lag is about 3 h; for the ARM forcing, the 418 

lag is somewhat longer, about 3-6 h.  Second, the simulations over-predict the peak 419 

intensity of the precipitation.  We note that these two limitations are not necessarily 420 

attributable to deficiencies in the cloud and precipitation physics parameterization in the 421 

CAM5, since they could arise from the uncertainties in the large-scale forcing fields. In 422 

fact, the over-prediction of precipitation may be attributed partially to an underestimation 423 

of the forcing component from subgrid-scale horizontal advection that appears in Eqs. (9) 424 

and (10) [S. Feng, Z. Li, Y. Liu, W. Lin, M. Zhang, T. Toto, A. M. Vogelmann, and S. 425 
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Endo, Development of fine-resolution analyses and expanded large-scale forcing 426 

properties. Part II: Scale-awareness and application to single-column model experiments, 427 

submitted to J. Geophys. Res., 2014].  These subgrid-scale horizontal advection 428 

components can significantly reduce the precipitation rate and improve the timing of the 429 

precipitation occurrence in this case.  Furthermore, an even more important issue is that 430 

there is no hydrometeor forcing included in the large-scale forcing fields, which we have 431 

found it can also significantly affect the precipitation rate in this case [S. Feng, Z. Li, W. 432 

Lin, Y. Liu, M. Zhang, T. Toto, A. M. Vogelmann, and S. Endo, Development of fine-433 

resolution analyses and expanded properties of large-scale forcing. Part III: Hydrometeor 434 

forcing and application to single-column model experiments, submitted to J. Geophys. 435 

Res., 2014]. 436 

 437 

5. Discussion and summary 438 

Data assimilation was recognized as a basic strategy in the ARM program at its 439 

outset nearly two decades ago. In the ARM program, the generation of the three-440 

dimensional fields from the observations remains challenging even for SGP, the most 441 

instrumented ARM site. One reason is that the observations acquired by the ARM 442 

program are insufficient to fully constrain the three-dimensional fields down to a cloud 443 

resolving scale. This motivated the development of the constrained objective variational 444 

analysis [Zhang and Lin, 1997], which generates large-scale forcing fields rather than 445 

three-dimensional fields.   446 

Data assimilation has progressed greatly over the past two decades and has 447 

continued to enhance capabilities to assimilate additional observations, particularly 448 
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satellite radiances.  At the same time, regional reanalyses have become available and 449 

regional modeling, represented by the community WRF model, has rapidly advanced.  By 450 

using the MS-DA algorithm, we attempt to capitalize on this progress and examine 451 

whether we can produce fine-resolution three-dimensional fields at cloud-resolving scales 452 

that are useful for practical applications within the ARM program. 453 

We have assimilated ARM observations along with measurements from other 454 

observing networks into a WRF model at a cloud-resolving resolution of 2 km over the 455 

ARM SGP site. The GSI data assimilation system is implemented in a MS-DA 456 

framework, and it has been applied to a set of cases for a variety of cloud and 457 

precipitation regimes. The case presented here is for a challenging mesoscale convective 458 

system. The results obtained are encouraging -- the performance assessments show that 459 

MS-DA significantly improves the representation of the intensity and structure of 460 

precipitation and clouds associated with the MCS.  461 

             For further evaluation of the MS-DA analysis, we derived large-scale forcing 462 

fields from high-resolution, three-dimensional fields and compared it with the ARM 463 

large-scale forcing product [Xie et al., 2004].  The comparison shows that the derived 464 

large-scale forcing has an overall accuracy comparable to the ARM forcing. The 465 

robustness of this result is confirmed using a set of SCM simulations.  The comparable 466 

accuracy between the derived large-scale forcing and the ARM forcing product motivates 467 

us to explore in detail the properties of the large-scale forcing, such as subgrid variability 468 

and hydrometeor forcing.  469 

The spatial resolution of climate models has been rapidly increasing in recent 470 

years. Some climate models now have a resolution on the order of 10 km. As a 471 
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consequence, scale-aware parameterizations have been under intensive development 472 

[Arakawa and Jung, 2011; Grell and Freitas, 2013].  In order to use SCMs to evaluate 473 

such parameterizations with the rapidly increasing resolution of climate models, a 474 

corresponding scale-aware forcing must be developed. Based on the fine-resolution MS-475 

DA analysis, we can derive forcing on explicitly specified scales and address the impact 476 

of grid-size in the SCM simulation. Another important issue is the impact of subgrid-477 

scale horizontal advection variability on the large-scale forcing. Leveraging the fine-478 

resolution three-dimensional fields from the MS-DA analysis, this issue can be 479 

systematically addressed. The results will be presented in [S. Feng, Z. Li, Y. Liu, W. Lin, 480 

M. Zhang, T. Toto, A. M. Vogelmann, and S. Endo, Development of fine-resolution 481 

analyses and expanded large-scale forcing properties. Part II: Scale-awareness and 482 

application to single-column model experiments, submitted to J. Geophys. Res., 2014]. 483 

Evidence shows that hydrometeor advection can significantly affect cloud water 484 

content, specific humidity, temperature, and other fields in SCM simulations [Petch and 485 

Dudhia, 1998].  In Petch and Dudhia [1998], the hydrometeor forcing was derived from 486 

regional mesoscale model simulations without data assimilation, but their results pointed 487 

to limitations in the representation of clouds and precipitation. Encouraged by the 488 

capability of MS-DA to improve the representation of clouds and precipitation, we will 489 

derive hydrometeor forcing fields and provide a systematic assessment of the impact of 490 

hydrometeor forcing on SCM simulations in the companion paper [S. Feng, Z. Li, W. Lin, 491 

Y. Liu, M. Zhang, T. Toto, A. M. Vogelmann, and S. Endo, Development of fine-492 

resolution analyses and expanded properties of large-scale forcing. Part III: Hydrometeor 493 
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forcing and application to single-column model experiments, submitted to J. Geophys. 494 

Res., 2014].  495 

 496 

Acknowledgements. The research described in this publication was supported by the 497 

U.S. Department of Energy Earth System Modeling (ESM) program via the FAst-physics 498 

System TEstbed and Research (FASTER) project www.bnl.gov/faster. The research was 499 

carried out, in part, at Jet Propulsion Laboratory (JPL) California Institute of Technology, 500 

under a contract with the National Aeronautics and Space Administration (NASA). The 501 

authors thank the ARM program for providing the SGP observations. The authors are 502 

grateful to Dr. Ann Fridlind (NASA Goddard Institute for Space Studies) for numerous 503 

stimulating discussions, insightful suggestions, and strong support. The authors thank the 504 

anonymous reviewers for comments that were very helpful in improving the manuscript. 505 

 506 

  507 



 24

References: 508 

Ackerman, T. P., and G. M. Stokes (2003), The atmospheric radiation measurement 509 

program, Physics Today, 56(1), 38-44. 510 

Arakawa, A., and J. H. Jung (2011), Multiscale modeling of the moist-convective 511 

atmosphere — A review, Atmos. Res., 102(3), 263-285. 512 

Bechtold, P., J. L. Redelsperger, I. Beau, M. Blackburn, S. Brinkop, J. Y. Grandper, A. 513 

Grant, D. Gregory, F. Guichard, C. How, and E. Ioannidou (2000), A GCSS 514 

model intercomparison for a tropical squall line observed during toga-coare. II: 515 

Intercomparison of single-column models and a cloud-resolving model, Q. J. R. 516 

Meteorol. Soc., 126(564), 865-888. 517 

Castro, C. L., R. A. Pielke, and G. Leoncini (2005), Dynamical downscaling: Assessment 518 

of value retained and added using the Regional Atmospheric Modeling System 519 

(RAMS), J. Geophys. Res., 110(D5), D05108. 520 

Charney, J. G., A. Arakawa, J. D. Baker, B. Bolin, R. E. Dickinson, R. M. Goody, C. E. 521 

Leith, H. M. Stommel, and C. I. Wunsch (1979), Carbon dioxide and climate:A 522 

scientific assessment, The National Academies Press. 523 

Clayton, A. M., A. C. Lorenc, and D. M. Barker (2013), Operational implementation of a 524 

hybrid ensemble/4D-Var global data assimilation system at the Met Office, Q. J. 525 

R. Meteorol. Soc., 139(675), 1445-1461. 526 

Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. 527 

Miller, and B. E. Martner (2000), Objective determination of cloud heights and 528 

radar reflectivities using a combination of active remote sensors at the ARM 529 

CART sites, J. Appl. Meteorol., 39(5), 645-665. 530 



 25

Clothiaux, E. E., M. A. Miller, R. C. Perez, D. D. Turner, K. P. Moran, B. E. Martner, T. 531 

P. Ackerman, G. G. Mace, R. T. Marchand, K. B. Widener, D. J. Rodriguez, T. 532 

Uttal, J. H. Mather, C. Flynn, K. L. Gaustad, and B. Ermold (2001), The ARM 533 

Millimeter Wave Cloud Radars (MMCRs) and the Active Remote Sensing of 534 

Clouds (ARSCL) Value Added Product (VAP), DOE Tech. Memo. ARM VAP-535 

002.1, U.S. Department of Energy, Washington, D.C. 536 

Cohn, S. E. (1997), An introduction to estimation theory, J. Meteor. Soc. Japan 75(1B), 537 

257-288. 538 

Daley, R. (1991), Atmospheric data analysis., 457 pp., Cambridge University Press, 539 

Cambridge, UK. 540 

Derber, J. C., and W.-S. Wu (1998), The use of TOVS cloud-cleared radiances in the 541 

NCEP SSI analysis system, Mon. Weather Rev., 126(8), 2287-2299. 542 

Fridlind, A. M., A. S. Ackerman, J. P. Chaboureau, J. Fan, W. W. Grabowski, A. A. Hill, 543 

T. R. Jones, M. M. Khaiyer, G. Liu, P. Minnis, H. Morrison, L. Nguyen, S. Park, J. 544 

C. Petch, J. P. Pinty, C. Schumacher, B. J. Shipway, A. C. Varble, X. Wu, S. Xie, 545 

and M. Zhang (2012), A comparison of TWP-ICE observational data with cloud-546 

resolving model results, J. Geophys. Res., 117(D5), D05204. 547 

Gettelman, A., H. Morrison, and S. J. Ghan (2008), A new two-moment bulk stratiform 548 

cloud microphysics scheme in the Community Atmosphere Model, Version 3 549 

(CAM3). Part II: Single-column and global results, J. Climate, 21(15), 3660-3679. 550 

Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, A. J. Conley, S. A. Klein, J. 551 

Boyle, D. L. Mitchell, and J. L. F. Li (2010), Global simulations of ice nucleation 552 



 26

and ice supersaturation with an improved cloud scheme in the Community 553 

Atmosphere Model, J. Geophys. Res., 115(D18), D18216. 554 

Ghan, S., D. Randall, K.-M. Xu, R. Cederwall, D. Cripe, J. Hack, S. Iacobellis, S. Klein, 555 

S. Krueger, U. Lohmann, J. Pedretti, A. Robock, L. Rotstayn, R. Somerville, G. 556 

Stenchikov, Y. Sud, G. Walker, S. Xie, J. Yio, and M. Zhang (2000), A 557 

comparison of single column model simulations of summertime midlatitude 558 

continental convection, J. Geophys. Res., 105(D2), 2091-2124. 559 

Grell, G. A., and S. R. Freitas (2013), A scale and aerosol aware stochastic convective 560 

parameterization for weather and air quality modeling, Atmos. Chem. Phys. 561 

Discuss., 13(9), 23845-23893. 562 

Houze, R. A. (2004), Mesoscale convective systems, Rev. Geophys., 42(4), RG4003. 563 

Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc (1997), Unified notation for data 564 

assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 565 

75(1B), 181-189. 566 

IPCC (2013), Climate Change 2013: The physical science basis. Contribution of working 567 

group I to the fifth assessment report of the intergovernmental panel on climate 568 

change, 1535 pp. 569 

Jazwinski, A. H. (1970), Stochastic processes and filtering theory, 376 pp., Academic 570 

Press, New York. 571 

Kain, J. S. (2004), The Kain–Fritsch convective parameterization: An update, J. Appl. 572 

Meteorol., 43(1), 170-181. 573 

Kalnay, E. (2003), Atmospheric modeling, data assimilation and predictability, 341 pp., 574 

Cambridge University Press, Cambridge, UK. 575 



 27

Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord (2009), 576 

Introduction of the GSI into the NCEP global data assimilation system, Wea. 577 

Forecasting, 24(6), 1691-1705. 578 

Li, Z., Y. Chao, and J.D. Farrara, and J.C. McWilliams (2012), Impacts of distinct 579 

observations during the 2009 Prince William Sound field experiment: A data 580 

assimilation study.  Cont. Shelf Res., DOI:10.1016/j.csr.2012.06.018. 581 

Li, Z., and I. M. Navon (2001), Optimality of variational data assimilation and its 582 

relationship with the Kalman filter and smoother, Q. J. R. Meteorol. Soc., 583 

127(572), 661-683. 584 

Lorenc, A. C. (2003), The potential of the ensemble Kalman filter for NWP—a 585 

comparison with 4D-Var, Q. J. R. Meteorol. Soc., 129(595), 3183-3203. 586 

Ménard, R., and R. Daley (1996), The application of Kalman smoother theory to the 587 

estimation of 4DVAR error statistics, Tellus A, 48(2), 221-237. 588 

Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jović, 589 

J. Woollen, E. Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. 590 

Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish, and W. Shi (2006), North 591 

American Regional Reanalysis, Bull. Am. Meteorol. Soc., 87(3), 343-360. 592 

Morrison, H., and A. Gettelman (2008), A new two-moment bulk stratiform cloud 593 

microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). 594 

Part I: Description and numerical tests, J. Climate, 21(15), 3642-3659. 595 

Neale, R. B., A. Gettelman, S. Park, C.-C. Chen, P. H. Lauritzen, D. L. Williamson, A. J. 596 

Conley, D. Kinnison, D. Marsh, A. K. Smith, F. Vitt, R. Garcia, J.-F. Lamarque, 597 

M. Mills, S. Tilmes, H. Morrison, P. Cameron-Smith, W. D. Collins, M. J. Iacono, 598 



 28

R. C. Easter, X. Liu, S. J. Ghan, P. J. Rasch, and M. A. Taylor (2012), Description 599 

of the NCAR Community Atmosphere Model (CAM 5.0), Technical Note 600 

NCAR/TN-486+STR. 601 

Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch (2003), Improvement of the K-profile 602 

model for the planetary boundary layer based on large eddy simulation data, 603 

Bound.-Layer Meteorol., 107(2), 401-427. 604 

Palmer, T. N. (2001), A nonlinear dynamical perspective on model error: A proposal for 605 

non-local stochastic-dynamic parametrization in weather and climate prediction 606 

models, Q. J. R. Meteorol. Soc., 127(572), 279-304. 607 

Parrish, D. F., and J. C. Derber  (1992), The national meteorological center’s spectral 608 

statistical interpolation analysis system, Mon. Weather Rev., 120, 1747–1763, 609 

1992. 610 

Petch, J. C., and J. Dudhia (1998), The importance of the horizontal advection of 611 

hydrometeors in a single-column model, J. Climate, 11(9), 2437-2452. 612 

Randall, D., and D. Cripe (1999), Alternative methods for specification of observed 613 

forcing in single-column models and cloud system models, J. Geophys. Res., 614 

104(D20), 24527-24545. 615 

Shapiro, M., J. Shukla, G. Brunet, C. Nobre, M. Béland, R. Dole, K. Trenberth, R. 616 

Anthes, G. Asrar, L. Barrie, P. Bougeault, G. Brasseur, D. Burridge, A. 617 

Busalacchi, J. Caughey, D. Chen, J. Church, T. Enomoto, B. Hoskins, Ø. Hov, A. 618 

Laing, H. Le Treut, J. Marotzke, G. McBean, G. Meehl, M. Miller, B. Mills, J. 619 

Mitchell, M. Moncrieff, T. Nakazawa, H. Olafsson, T. Palmer, D. Parsons, D. 620 

Rogers, A. Simmons, A. Troccoli, Z. Toth, L. Uccellini, C. Velden, and J. M. 621 



 29

Wallace (2010), An earth-system prediction initiative for the twenty-first century, 622 

Bull. Am. Meteorol. Soc., 91(10), 1377-1388. 623 

Song, H., W. Lin, Y. Lin, A. B. Wolf, R. Neggers, L. J. Donner, A. D. Del Genio, and Y. 624 

Liu (2013), Evaluation of precipitation simulated by seven SCMs against the 625 

ARM observations at the SGP site, J. Climate, 26(15), 5467-5492. 626 

Stokes, G. M., and S. E. Schwartz (1994), The atmospheric radiation measurement (ARM) 627 

program: Programmatic background and design of the cloud and radiation test bed, 628 

Bull. Am. Meteorol. Soc., 75(7), 1201-1221. 629 

Thompson, G., R. M. Rasmussen, and K. Manning (2004), Explicit forecasts of winter 630 

precipitation using an improved bulk microphysics scheme. Part I: Description 631 

and sensitivity analysis, Mon. Weather Rev., 132(2), 519-542. 632 

Toth, Z., M. Tew, D. Birkenheuer, S. Albers, Y. Xie, and B. Motta (2013), Multiscale 633 

data assimilation and forecasting, Bull. Am. Meteorol. Soc., 95(2), ES30-ES33. 634 

Wang, X., D. Parrish, D. Kleist, and J. Whitaker (2013), GSI 3DVar-based ensemble–635 

variational hybrid data assimilation for NCEP Global Forecast System: Single-636 

resolution experiments, Mon. Weather Rev., 141(11), 4098-4117. 637 

Wu, W.-S., R. J. Purser, and D. F. Parrish (2002), Three-dimensional variational analysis 638 

with spatially inhomogeneous covariances, Mon. Weather Rev., 130(12), 2905-639 

2916. 640 

Xie, S., R. T. Cederwall, and M. Zhang (2004), Developing long-term single-column 641 

model/cloud system-resolving model forcing data using numerical weather 642 

prediction products constrained by surface and top of the atmosphere observations, 643 

J. Geophys. Res., 109(D1), D01104. 644 



 30

Xie, S., R. T. Cederwall, M. Zhang, and J. J. Yio (2003), Comparison of SCM and 645 

CSRM forcing data derived from the ECMWF model and from objective analysis 646 

at the ARM SGP site, J. Geophys. Res., 108(D16), 4499. 647 

Xie, S., M. Zhang, M. Branson, R. T. Cederwall, A. D. Del Genio, Z. A. Eitzen, S. J. 648 

Ghan, S. F. Iacobellis, K. L. Johnson, M. Khairoutdinov, S. A. Klein, S. K. 649 

Krueger, W. Lin, U. Lohmann, M. A. Miller, D. A. Randall, R. C. J. Somerville, 650 

Y. C. Sud, G. K. Walker, A. Wolf, X. Wu, K.-M. Xu, J. J. Yio, G. Zhang, and J. 651 

Zhang (2005), Simulations of midlatitude frontal clouds by single-column and 652 

cloud-resolving models during the Atmospheric Radiation Measurement March 653 

2000 cloud intensive operational period, J. Geophys. Res., 110(D15), D15S03. 654 

Xie, S., R. B. McCoy, S. A. Klein, R. T. Cederwall, W. J. Wiscombe, M. P. Jensen, K. L. 655 

Johnson, E. E. Clothiaux, K. L. Gaustad, C. N. Long, J. H. Mather, S. A. 656 

McFarlane, Y. Shi, J.-C. Golaz, Y. Lin, S. D. Hall, R. A. McCord, G. Palanisamy, 657 

and D. D. Turner (2010), Cloud and more: ARM climate modeling best estimate 658 

data, Bull. Am. Meteorol. Soc., 91(1), 13-20. 659 

Xie, Y., S. Koch, J. McGinley, S. Albers, P. E. Bieringer, M. Wolfson, and M. Chan 660 

(2011), A space–time multiscale analysis system: A sequential variational 661 

analysis approach, Mon. Weather Rev., 139(4), 1224-1240. 662 

Zhang, F., Y. Weng, J. F. Gamache, and F. D. Marks (2011), Performance of convection-663 

permitting hurricane initialization and prediction during 2008–2010 with 664 

ensemble data assimilation of inner-core airborne doppler radar observations, 665 

Geophys. Res. Lett., 38(15), L15810. 666 



 31

Zhang, M. H., and J. L. Lin (1997), Constrained variational analysis of sounding data 667 

based on column-integrated budgets of mass, heat, moisture, and momentum: 668 

Approach and application to ARM measurements, J. Atmos. Sci., 54(11), 1503-669 

1524. 670 

  671 



 32

Figure captions: 672 

Figure 1. (a) Three nested WRF domains with a resolution of 18km, 6km and 2 km and 673 

(b) the analysis domain with the locations of the ARM SONDE (crosses) and 674 

SMOS (squares). The long-dashed square box in (b) indicates the area where the 675 

large-scale forcing fields are derived. The short-dashed dodecagon in (b) shows 676 

the domain that is used for generating the ARM forcing product. 677 

Figure 2. GOES infrared image (left) and NEXRAD reflectivity map (right). The GOES 678 

image is a snapshot at 0240 UTC 14 June. The observed reflectivity map was 679 

taken at 0302 UTC 14 June with an elevation angle of 0.49 degrees.  The radar is 680 

located at 36.74oN, 98.13oW. 681 

Figure 3. Modeled maximum reflectivity at 03 UTC 14 June 2007.  (a) is obtained with 682 

MS-DA and (b) is without MS-DA. The color scale indicates reflectivity in dBZ. 683 

Figure 4. Time evolution of hydrometeor reflectivity vertical profile from (a) ARSCL, (b) 684 

simulation with MS-DA, and (c) simulation without MS-DA. The ARSCL data 685 

are 10-min averages with a vertical resolution of 45 m, from 105 m to 23,100 m. 686 

The hydrometeor reflectivity in (b) and (c) were calculated using the hourly 687 

forecasts and averaged over a 100 km  100 km domain centered on the SGP 688 

central facility.  689 

Figure 5. Time series of domain-averaged precipitation rate (mm/h). Solid line denotes 690 

the ABRFC observation; dashed denotes the simulation with MS-DA; the dotted 691 

line denotes the simulation without data assimilation.  692 

×
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Figure 6. Horizontal distribution of precipitation rate (mm/h) at 08 UTC 13 June and at 693 

06 UTC and 18 UTC June 14 from (a-c) ABRFC observation, (d-f) MS-DA, and 694 

(g-i) no-DA experiments.  695 

Figure 7. Time-pressure distribution of (a and b) the large-scale vertical velocity , (c 696 

and d) the large-scale forcing, namely , and (e and f) the large-scale 697 

forcing, namely .  The thick solid lines in (a and b) are the observed 698 

surface precipitation rate (mm/h). Figure 8. Time series of hourly precipitation 699 

rates. The black line denotes the ABRFC observations, and blue line denotes the 700 

MS-DA simulation.  Both are averaged over the innermost domain (d03) in 701 

Figure 1. Red and green lines denote the SCAM5-simulated precipitation driven 702 

by the derived large-scale forcing and by the ARM forcing, respectively. The 20-703 

min SCAM5 output is averaged to obtain hourly precipitation rates. 704 
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 706 
 707 

Figure 1. (a) Three nested WRF domains with a resolution of 18km, 6km and 2 km and 708 

(b) the analysis domain with the locations of the ARM SONDE (crosses) and SMOS 709 

(squares). The long-dashed square box in (b) indicates the area where the large-scale 710 

forcing fields are derived. The short-dashed dodecagon in (b) shows the domain that is 711 

used for generating the ARM forcing product. 712 
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 714 

 715 
 716 
Figure 2. GOES infrared image (left) and NEXRAD reflectivity map (right). The GOES 717 

image is a snapshot at 0240 UTC 14 June. The observed reflectivity map was taken at 718 

0302 UTC 14 June with an elevation angle of 0.49 degrees.  The radar is located at 719 

36.74oN, 98.13oW. 720 
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 722 

 723 
 724 
Figure 3. Modeled maximum reflectivity at 03 UTC 14 June 2007.  (a) is obtained with 725 

MS-DA and (b) is without MS-DA. The color scale indicates reflectivity in dBZ. 726 

 727 
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 728 
 729 

Figure 4. Time evolution of hydrometeor reflectivity vertical profile from (a) ARSCL, (b) 730 

simulation with MS-DA, and (c) simulation without MS-DA. The ARSCL data are 731 
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10-min averages with a vertical resolution of 45 m, from 105 m to 23,100 m. The 732 

hydrometeor reflectivity in (b) and (c) were calculated using the hourly forecasts and 733 

averaged over a 100 km  100 km domain centered on the SGP central facility.  734 
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 736 
 737 
Figure 5. Time series of domain-averaged precipitation rate (mm/h). Solid line denotes 738 

the ABRFC observation; dashed denotes the simulation with MS-DA; the dotted line 739 

denotes the simulation without data assimilation.  740 

 741 
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 742 
Figure 6. Horizontal distribution of precipitation rate (mm/h) at 08 UTC 13 June and at 743 

06 UTC and 18 UTC June 14 from (a-c) ABRFC observation, (d-f) MS-DA, and (g-i) no-744 

DA experiments 745 
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 746 
 747 

Figure 7. Time-pressure distribution of (a and b) the large-scale vertical velocity , (c 748 

and d) the large-scale forcing, namely 

, 

and (e and f) the large-scale forcing, 749 

namely 

.  The thick solid lines in (a and b) are the observed surface precipitation 

750 

rate (mm/h).
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 752 
Figure 8. Time series of hourly precipitation rates. The black line denotes the ABRFC 753 

observations, and blue line denotes the MS-DA simulation.  Both are averaged over the 754 

innermost domain (d03) in Figure 1. Red and green lines denote the SCAM5-simulated 755 

precipitation driven by the derived large-scale forcing and by the ARM forcing, 756 

respectively. The 20-min SCAM5 output is averaged to obtain hourly precipitation rates. 757 

 758 
 759 
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